DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential distinguishing function is its reinforcement learning (RL) action, which was used to improve the model's responses beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately enhancing both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, indicating it's to break down intricate queries and factor through them in a detailed manner. This directed reasoning procedure enables the design to produce more precise, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured responses while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has caught the market's attention as a flexible text-generation model that can be incorporated into numerous workflows such as representatives, logical reasoning and information analysis tasks.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion parameters, enabling efficient reasoning by routing queries to the most relevant professional "clusters." This method allows the design to specialize in different problem domains while maintaining general efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more efficient designs to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and examine designs against crucial security criteria. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, create a limitation boost demand and reach out to your account team.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For setiathome.berkeley.edu directions, see Establish permissions to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful content, and evaluate models against essential safety requirements. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general flow involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, trademarketclassifieds.com it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The model detail page offers necessary details about the design's abilities, pricing structure, and execution guidelines. You can find detailed use guidelines, consisting of sample API calls and code snippets for combination. The design supports different text generation tasks, including content development, code generation, and question answering, garagesale.es using its support finding out optimization and CoT thinking capabilities.
The page likewise consists of implementation options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, choose Deploy.
You will be triggered to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of instances, go into a variety of circumstances (in between 1-100).
6. For garagesale.es example type, pick your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up sophisticated security and infrastructure settings, including virtual personal cloud (VPC) networking, service function approvals, and file encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you might desire to examine these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the implementation is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive interface where you can try out different triggers and adjust model specifications like temperature level and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For instance, material for reasoning.
This is an exceptional method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play area offers immediate feedback, assisting you comprehend how the design reacts to different inputs and letting you fine-tune your triggers for optimal results.
You can rapidly check the model in the play ground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends a request to produce text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two hassle-free techniques: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you select the technique that finest suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design browser shows available models, with details like the service provider name and model abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each design card shows crucial details, including:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if applicable), suggesting that this design can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the design card to view the model details page.
The design details page includes the following details:
- The model name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you release the model, it's advised to review the model details and license terms to verify compatibility with your use case.
6. Choose Deploy to proceed with release.
7. For Endpoint name, use the immediately produced name or create a customized one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, get in the variety of circumstances (default: 1). Selecting proper instance types and counts is crucial for cost and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the model.
The deployment process can take numerous minutes to finish.
When implementation is total, your endpoint status will change to InService. At this moment, the model is prepared to accept reasoning demands through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To avoid unwanted charges, complete the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases. - In the Managed deployments section, locate the endpoint you want to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop innovative services utilizing AWS services and sped up compute. Currently, he is focused on establishing methods for fine-tuning and optimizing the reasoning performance of large language models. In his leisure time, Vivek delights in treking, seeing movies, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building services that assist clients accelerate their AI journey and unlock service value.